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Abstract. Solitary waves in active-dissipative dispersive media are considered. The exact
solutions in the form of solitary waves and kink-shaped waves are presented. The difference
equation for numerical simulation of nonlinear waves is given. Numerical results of the
interaction of solitary waves are discussed. It is shown that there is a solitary wave in active-
dissipative dispersive media that has the soliton property.

1. Introduction

In this paper we consider solitary waves described by the nonlinear evolution equation in
the form

ut + uux + αuxx + βuxxx + γ uxxxx = 0. (1.1)

Equation (1.1) can be used to describe long waves on a viscous fluid flowing down along
an inclined plane [1], unstable drift waves in plasma [2] and stress waves in fragmentated
porous media [3].

At β = 0 equation (1.1) is referred to as the Kuramoto–Sivashinsky equation, one of
the simplest equations that appears in modelling the nonlinear behaviour of disturbances
for a sufficiently large class of active dissipative media. It represents the evolution of
concentration in chemical reactions [4], hydrodynamic instabilities in laminar flame fronts
and at the interface of two viscous fluids [5].

The investigation of stability of the steady-state motion described by equation (1.1) with
respect to small perturbationsu′ ∼= exp{ikx + χt} gives the linear dispersion relation

χ = k2(α − γ k2)− iβk3. (1.2)

Equation (1.2) shows that for positive constantsα andγ in equation (1.1) small-amplitude
sinusoidal waves are linearly unstable for long wavelengths(0 < k <

√
α/γ ) and stable

for short wavelengths(k >
√
α/γ ). The maximum growth rate occurs at wavenumber

k∗ = (α/2γ )1/2.
We multiply equation (1.1) byu(x, t) assuming limx→±∞ umx(x, t) = 0 (m = 0, 1, 2, 3;

umx is themth-order derivative with respect tox) and we integrate the obtained expression
with respect tox from −∞ to +∞:

1

2

∂

∂t
〈u2〉 = d〈u2

x〉 − γ 〈u2
xx〉 〈u2

x〉 =
∫ ∞

−∞
u2
x dx. (1.3)

One can see from equation (1.3) that, whenα > 0 andγ > 0, the term with the second
derivative in equation (1.1) corresponds to the addition of energy to the system and the
fourth-order derivative term characterizes its dissipation.
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The existence of instability and dispersion in equation (1.1) leads to the steady state,
because the energy influx due to self-excitation is transferred to short wavelengths and
balanced by dumping due to the fourth-derivative dissipation term [6].

Equation (1.1) is not integrable by the inverse scattering transform because this equation
does not possess the Painlevé property. The proof of non-integrability of equation (1.1)
at β = 0 is given in [7]. However, equation (1.1) has some special solutions [7–9].
Equation (1.1) is invariant under the Gallilean transformation

(u, x, t) → (u+ C, x − Ct, t) (1.4)

and we will keep this in mind.
Let us normalize equation (1.1) setting

u = α
√
α/γ u′ x =

√
γ /αx ′ t = (γ /α2)t ′ σ = β/

√
αγ . (1.5)

Then equation (1.1) takes the form

ut + uux + uxx + σuxxx + uxxxx = 0 (1.6)

(the primes of the variables are omitted). Also, equation (1.6) is invariant under
transformations

u → −u x → −x σ → −σ (1.7)

which allows us to study equation (1.6) forσ > 0 only.
The aim of this work is to search for analytical solutions of equation (1.1) by the singular

manifold method and analyse them by means of a numerical solution.

2. Special solutions of equation (1.1)

It is known that the Painlev́e test provides useful information for identifying the completely
integrable cases of families of nonlinear ordinary and partial differential equations [10].
However, the benefit of the Painlevé approach is not limited to the integrability prediction for
the integrable equations. Painlevé analysis also yields a systematic procedure for obtaining
special solutions when an equation possesses only the conditional Painlevé property [7–9].

As mentioned above, equation (1.1) does not have the Painlevé property but has the
conditional Painlev́e property. There are a number of approaches to take this into account
[7–9], but here we will use the singular manifold method following Conte and Musette [7].

Let us look for special solutions of equation (1.1) in the form

u(x, t) = a0Y
p + a1Y

p−1 + · · · + ap (2.1)

whereY (x, t) satisfies the following set of equations [11]:

Yx = −Y 2 − 1
2S (2.2)

Yt = CY 2 − CxY + 1
2(SC + Cxx). (2.3)

C andS are functions invariant under the M̈obius group of transformations [12]. They meet
the compatibility condition in the form [7]

St + Cxxx + 2CxS + CSx = 0. (2.4)

Coefficientsa0, a1, . . . , ap are found after substitution of equation (2.1) into the original
equation and equating expressions at different powers ofY . Some of these coefficients can
depend on functionsS, C and their derivatives.
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Insertingu ∼= a0Y
p into equation (1.6) and taking into account equation (2.2), one can

obtainp = 3 anda0 = 120. Therefore, the solution of equation (1.6) can be sought in the
form

u = 120Y 3 + a1Y
2 + a2Y + a3. (2.5)

Substitution of expression (2.5) into equation (1.6) leads to the following equalities:

a1 = −15σ (2.6)

a2 = 60S + 15

76
(16− σ 2) (2.7)

a3 = −15Sx − 5σS + C + σ

76

(
7 − 13

8
σ 2

)
. (2.8)

Also, we have the following overdetermined set of equations forS and C with σ as a
parameter:

−Cx + 3Sxx + 5

4
σSx + 2S2 + 5

152
(16− σ 2)S − 1

722

(
131

64
σ 4 − 87

8
σ 2 + 11

)
= 0 (2.9)

Sxxx + 3

8
σSxx + 3SSx + 5

608
(16− σ 2)Sx + σ

4
S2 − σ

[
3

152

(
σ 2 − 10

3

)]2

= 0 (2.10)

St + Sxxxx + σ

2
Sxxx − 2SSxx + 5

304
(16− σ 2)Sxx − 2S2

x + (C − σS)Sx + 2SCx = 0 (2.11)

Ct + CxC − 135SxxSx + 15

2
σSxxS + σ

152

(
1011σ 2

64
− 39

)
Sxx − 225

8
σS2

x − 15SxS
2

+15

38

(
165

32
σ 2 − 1

)
SxS + 15CxSx + 15

1444

(
1991

2048
σ 4 − 581

128
σ 2 + 17

)
Sx

+45

4
σS3 + 3σ

152

(
89

32
σ 2 + 3

)
S2 − 5σ

[
9

152

(
σ 2 − 10

3

)]2

S

+ σ

1523

(
257

2
σ 6 − 16 003

2
σ 4 + 97 037

2
σ 2 − 77 328

)
= 0. (2.12)

Equations (2.2) and (2.3) can be presented in the linear form [7]

ψxx + 1
2Sψ = 0 (2.13)

ψt + Cψx − 1
2Cxψ = 0. (2.14)

These equations can be derived after substitution ofY = ψx/ψ into equations (2.2) and
(2.3).

Taking S and C to be constant is sufficient to lead to solitary wave solutions of
equation (1.1). In this case equation (2.4) is evidently satisfied. Also, equations (2.9)–
(2.12) are followed by the algebraic equations forS, C andσ as a parameter:

2S2 + 5

152
(16− σ 2)S − 1

722

(
131

64
σ 4 − 87

8
σ 2 + 11

)
= 0 (2.15)

σ

4
S2 − σ

[
3

152

(
σ 2 − 10

3

)]2

= 0 (2.16)

45

4
σS3 + 3σ

152

(
89

32
σ 2 + 3

)
S2 − 5σ

[
9

152

(
σ 2 − 10

3

)]2

S

+ σ

1523

(
257

2
σ 6 − 16 003

2
σ 4 + 97 037

2
σ 2 − 77 328

)
= 0. (2.17)
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Figure 1. Special solutions of equation (1.6): (a)σ = 0, (b)
σ = 12/

√
47, (c)σ = 16/

√
73 and (d)σ = 4.

Solving the latter set of equations results inC being an arbitrary constant, andσ and S
which are presented in table 1.

Taking into account equations (2.13) and (2.14), one can find

ψ(x, t) = C1 ek(x−Ct)/2 + C2 ek(x−Ct)/2 (2.18)

wherek2 = −2S, C1 andC2 are arbitrary constants.
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Table 1. Solutions of equations (2.15)–(2.17).

σ 0 0 12√
47

16√
73

4 4

S − 11
38

1
38 − 1

94 − 1
146 − 1

2
1
2

Reverting from functionψ(x, t) taken in the form (2.18) toY = ψx/ψ brings about
the following solution of equation (1.6) from transformation formula (2.5):

u = 120Y 3 − 15σY 2 + 15

(
4S + 1

76
(16− σ 2)

)
Y − 5σS + σ

76

(
7 − 13

8
σ 2

)
+ C (2.19)

where

Y = k

2
tanh

{
k

2
(x − Ct)− ϕ0

}
C and ϕ0 are arbitrary constants. Indeed, expression (2.19) is the true solution of
equation (1.6) with certainσ andS only as stated in table 1. In table 2 we list the solutions
of equation (1.6) at concrete values ofσ , k = −√

2|S|, ϕ0 = 0. Particular solutions of
equation (1.6) corresponding toσ = 0, 12/

√
47, 16/

√
73 and 4 are plotted in figure 1.

These are profiles of the solitary waves att = 0. Clearly the wave propagation rate is
determined by the choice of constantC. Here we takeC so thatu → 0 atξ → −∞, which
givesC = (30/11)k3, 60k3, 90k3 and 6k3, respectively, wherek is from table 2.

Table 2. Special solutions of equation (1.6),ξ = k/2(x − Ct).

σ k Special solutions

0
√

11
19 C + 15k3 tanh(ξ)

(
tanh2(ξ)− 9

11

)
0 1√

19
C + 15k3 tan(ξ)(tan2(ξ)+ 3)

12√
47

1√
47

C + 15k3{[tanh(ξ)− 1]3 + 4}
16√
73

1√
73

C + 15k3{tanh(ξ)[tanh2(ξ)+ 5] + 4 cosh−2(ξ)}
4 1 C + 4 − 15k3[1 + tan(ξ)] cos−2(ξ)

4 1 C − 6 + 15k3[1 − tanh(ξ)] cosh−2(ξ)

Assumingx → ±∞, we can obtain

u → C + σ

76

(
7 − 13

8
σ 2

)
− 5

4
σk2 − 15

152
(16− σ 2)k at x → −∞ (2.20)

u → C + σ

76

(
7 − 13

8
σ 2

)
− 5

4
σk2 + 15

152
(16− σ 2)k at x → +∞ (2.21)

wherek = √−2S. Clearly, expressions (2.20) and (2.21) are true only for thoseS given in
table 1 that are negative. Other solutions corresponding toS > 0 are periodical; moreover,
they are singular atξ = ±π/2, and, as a result, cannot tend to any limit atx → ±∞.

Taking an advantage of formulae (2.20) and (2.21) and solutions from table 2, one can
build some approximate solutions of equation (1.1). Let us show, for example, that

u = 15k3{tanh3(ξ+)+ tanh3(ξ−)− 9
11(tanh(ξ+)+ tanh(ξ−))} (2.22)

(where ξ± = (k/2)(x ∓ δ ∓ Ct), k = √
11/

√
19, C = 30/11k3, δ > 5) is the solution

of equation (1.6). The approximate solution (2.22) was constructed from the solution of
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Figure 2. Approximate solution (2.2) of equation (1.6):
σ = 0, δ = 5.

equation (1.6) atσ = 0 given in table 2. It is equal to the sum of solutionsu1 and u2,
corresponding toC1 = C andC2 = −C, and shifted byδ to the right and to the left along
thex-axis accordingly. It is seen from figure 1 and expressions (2.20) and (2.21) thatu1 6= 0
whenu2 = 0 andvice versa.

Solution (2.22) and the numerical solution of equation (1.6) more or less coincide for
δ > 5. Figure 2 illustrates the caseδ = 5.
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Figure 3. Interaction between the solitary wave (3.3)
and the disturbanceu(x) = 15 cosh−2{8(x − 3)}. The
full curve shows the interaction; the broken curve is
the analytical solution for the solitary wave only.

One can also present the solution of equation (1.6) in the form of a soliton lattice using
the solution of equation (1.6) atσ = 4 from table 2. It takes the form

u ∼= 15
N∑
n=1

[1 − tanh{ 1
2(x − 6t)+ nT }] cosh−2{ 1

2(x − 6t)+ nT } (2.23)

whereT is the constant that satisfies the inequalityT > 1
6.
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Figure 4. Propagation of the wave given att = 0 by
expressionu(x) = 15 cosh−2(kx/2){1 − tanh(kx/2)},
wherek = 0.4 for the full curve, whilek = 1 for the
broken curve.

3. Numerical modelling solitary waves in active-dissipative dispersive media

So far we have been considering only a few special solutions for solitary waves. To
investigate the propagation of waves and their interaction we shall use numerical simulation.



Solitary waves in active-dissipative dispersive media 8075

Figure 5. σ -dependence of amplitude A and velocity C
of solitary waves formed from the initial condition (3.3).

In doing so, we employ the difference equation

un+1
j − unj

τ
+ 1

4h
[(unj+1)

2 − (unj−1)
2] + α

2h2
(un+1
j+1 − 2un+1

j + un+1
j−1)+ β

4h3
(un+1
j+2 − 2un+1

j+1

+2un+1
j−1 − un+1

j−2)+ γ

2h4
(un+1
j+2 − 4un+1

j+1 + 6un+1
j − 4un+1

j−1 + un+1
j−2) = 0 (3.1)

whereun+1
j is the value of the mesh function atxj = jh and tn+1 = (n + 1)τ ; τ is the

mesh width in time;h is the mesh width alongx-axis.
The difference equation (3.1) approximates the partial differential equation (1.1) with

order O(τ + h2). It can be transformed into the following equation,

aju
n+1
j−2 + bju

n+1
j−1 + cju

n+1
j + dju

n+1
j+1 + eju

n+1
j+2 = fj (3.2)

where

aj = −βh
2

+ γ bj = βh− 4γ + αh2

cj = 6γ − 2αh2 + 2h4

τ
dj = −βh− 4γ + αh2

ej = βh

2
+ γ fj = 2h4unj

τ
− h3

2
[(unj+1)

2 − (unj−1)
2].



8076 N A Kudryashov and E D Zargaryan

The numerical scheme (3.1) is absolutely stable atτ 6 h4/2γ , because its realization
leads us to the set of equations (3.2) with a band matrix. The difference equation (3.2)
with appropriate initial conditionu(x, t = 0) and four boundary conditions added was
programmed.

We took the special solutions of equation (1.1) from table 2 for testing convergence
of the numerical solution obtained by difference equation (3.2) to the exact solution. We
observed that an error accumulated in time. Apparently it was caused by using the linearized
numerical scheme (3.1) when we took the nonlinear term from the previous time step.
Keeping this in mind, we choseτ so that the numerical solution converged to the exact
solution for rather large values oft ∼ 40–50. The convergence proved to be driven by
σ = β/

√
αγ . So, atσ = 0 the difference scheme is applicable forτ 6 h2, whereas at

σ = 4 the restrictions are more rigorous,τ 6 h3.
Numerical modelling the propagation of the solitary wave given at the initial instant by

the expression

u(x) = 15 cosh−2(x/2){1 − tanh(x/2)} (3.3)

shows that atσ = 4 the solitary wave keeps its form and is transported with velocityC = 6.
The profile of this wave when found numerically fits the solitary wave

u(x, t) = 15 cosh−2((x − 6t)/2){1 − tanh((x − 6t)/2)} (3.4)

which corresponds to (3.3) att = 0.
We have also considered interactions between waves described by equation (1.1) and

given att = 0 by the formula

u(x, t = 0) = u1 + u2

whereu1 is (3.3) andu2 = 15 cosh−2{8(x − 3)}. Figure 3 illustrates the process of such an
interaction. It appears from figure 3 that a wave corresponding to (3.4) att = 0 encounters
the disturbance, interacts with it, and continues unchanged, albeit with a certain phase lag,
with respect to (3.4). Therefore the wave corresponding to (3.4) att = 0 behaves like a
soliton. However, the second wave alters with time, its amplitude increases, and for fairly
large calculation times it acquires the same shape as solution (3.4). Note that this process
of increasing amplitude takes place independently of the waves interaction.

We have studied the propagation of the solitary wave in active-dissipative dispersive
media at another initial condition. Figure 4 illustrates the evolution of the solitary wave
that is wider att = 0 than one described by (3.3):

u(x) = 15 cosh−2(0.4(x/2)){1 − tanh(0.4(x/2))}.
One can see that this wave falls into pieces with time, resulting in three waves. Two of them
have the same shape as the exact solitary wave solution (3.4). The broken curve in figure 4
illustrates the exact solution (3.4) of equation (1.1). The initial wave with larger amplitude
than that of the exact solution (3.4) is also split into pieces and we obtain a solution like
(3.4). In contrast, if the amplitude of the initial wave is smaller than that of solution (3.4),
this wave will grow with time until it achieves the amplitude of the analytical solution.

It should be noted that such results can be observed at different values ofσ . In
examining the effect of the parameterσ on the structure formation of a solitary wave
we found a numerical solution of equation (1.1) at different values ofσ with (3.3) as an
initial condition. We observed this wave developing in time and acquired the form of the
solitary wave with the amplitude and the wavenumber corresponding to each specificσ .
However, atσ < 0.5 we noticed no regular structure to be organized. Theσ -dependence
of the amplitude and speed of the solitary wave formed from the initial condition (3.3) is
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plotted in figure 5. This figure illustrates that both the amplitude and wave speed of the
soliton solution increase withσ .

4. Conclusion

Solitary waves in active-dissipative dispersive media were considered. A procedure of
finding solitary wave solutions of equation (1.1) by means of the singular manifold method
was given. All known localized solutions of equation (1.1) were listed in table 2. The
difference scheme was offered to simulate the interaction of solitary waves and study
solutions of equation (1.1) in the general case of parametersα, β andγ . Theσ -dependence
of the amplitude and speed of the solitary wave, formed from the localized disturbance, was
obtained.
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